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Asymptotic Tracking and Robustness of MAS
Transitions Under a New Communication Topology
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Abstract— We have recently applied the principles of
continuum mechanics to develop a new leader–follower model
for the collective motion of a multiagent system (MAS). Agents
are modeled as particles of a continuum body that can deform
in R

n (n = 1, 2, 3) under a specific class of mappings, called the
homogeneous transformation. This paper shows how a desired
homogeneous deformation is uniquely specified based on the
trajectories chosen by p +1 ( p ≤ n) leaders, and it is acquired by
the remaining agents, called followers, through local communi-
cation. Under this setup, every follower interacts with p + 1
local agents with fixed communication weights that are uniquely
determined based on the initial positions of the agents. Although
asymptotic convergence of the agents’ transient positions to the
desired final positions (prescribed by a homogeneous transforma-
tion) can be assured by applying the proposed paradigm, follower
agents deviate from the desired positions during evolution. The
main objective of this paper is to assure that the transient error,
the difference between the actual and desired positions of each
follower, converges to zero during evolution. For this purpose,
each leader chooses a time-dependent polynomial vector of order
(h − 1) (h ∈ N) for its trajectory connecting two consecutive way
points, and each follower applies continuous time or discrete time
linear time invariant dynamics to update its state based on the
states of p +1 local agents. The second objective of this paper is
to develop a paradigm for the homogeneous deformation of
an MAS that is robust to communication failure. For this
purpose, we will show how followers can acquire desired positions
prescribed by a homogeneous mapping to preserve volumetric
ratios under either fixed or switching communication topologies,
where there is no restriction on the number of the agents, if
every follower communicates with mi ≥ p + 1 local agents. In
addition, agents’ collective motion can be stably continued even
if some followers give up communication with other agents at
some time during evolution.

Note to Practitioners—A multiagent system evolution as contin-
uum deformation is a novel idea for avoiding interagent collision
and collisions of agents with obstacles, while a capability to
manage large deformations (expiation or contraction) is provided.
This idea becomes more interesting if deviations of agents
from desired positions defined by continuum deformation vanish
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during evolution when agents only access neighboring agent state
information.

Index Terms— Asymptotic tracking, collective motion, contin-
uum deformation, multiagent systems (MASs).

I. INTRODUCTION

D ISTRIBUTED control for a multiagent system (MAS)
has received considerable attention in recent years.

Distributed control algorithms have been widely applied
for the collective motion of mobile robot systems.
Collective motion of an MAS has found different applications,
such as gaming, maneuvering in hazardous environments, and
formation flights. The consensus algorithm [3]–[17], methods
based on the partial differential equation (PDE) [18]–[22],
and the containment control method [23]–[28] are recent
approaches to managing collective motion of an MAS. These
methods are all inspired by heat diffusion problems and apply
Laplacian control to reach global coordination through local
communication.

To date, different applications, such as motion
control [3], [4], network clock synchronization [6],
medical [7], [8], and power systems [10], have been
proposed for the consensus model. In [11] and [12], it has
been shown how an MAS applying switching communication
topologies can asymptotically reach consensus or agreement.
Furthermore, the robustness of distributed convergence in
an MAS under communication failure [16] and model
uncertainty [29] are important issues that have been addressed
by researchers. Coming to a consensus agreement under
stochastically switching topologies was also developed
in [30]. Necessary and sufficient conditions for convergence
of an MAS under consensus when the communication graph is
generated by an ergodic and stationary random process were
developed in [17]. Stability analysis of MAS evolution under
consensus with time delay has also been studied [13]–[15].

When applying PDE methods, evolution of an MAS is
usually modeled by the first-order or second-order PDE with
spatially varying parameters. Agents of the MAS are then
categorized as leaders and followers, where leader agents are
those agents placed at the MAS team boundary. Leaders’
positions are prescribed by the imposed boundary condi-
tions. The interior agents are followers where each follower
communicates with some neighboring agents, and the com-
munication weights are determined by the discretization of
the spatially varying PDE element(s). Ghods and Krstic [18]
and Frihauf and Krstic [20] show how a random distri-
bution of agents can be stably deployed on desired pla-
nar curves, where the collective motion of the agents is
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governed by a reaction-advection-diffusion class of PDEs.
Meurer and Krstic [22] show how a collective motion of an
MAS, prescribed by a nonlinear PDE, can be deployed on
a desired formation through local communication. In [21], a
PDE-based model reference adaptive control algorithm has
been proposed for the collective motion of an MAS, facing
uncertain heterogeneous interagent communication. A PDE-
based technique has been recently applied in wind-integrated
power systems to control interarea power oscillations when
connected to the transmission line [19].

Containment control is a leader–follower model for pre-
scribing a collective motion of an MAS. Under this setup,
leader agents move independently and guide all agents toward
a desired configuration. In addition, followers update their
positions through local interaction with positive communi-
cation weights, where interagent communication among the
followers is determined by a strongly connected subgraph.
In [28], hybrid Go–Stop control strategies enable leaders to
guide followers to a desired target. Containment control of
an MAS under both fixed [26] and switching communication
topologies is developed in [24], [26], and [27]. Containment
control of a formation where agents are modeled as double
integrators was presented in [25], and communication weight
formulation was investigated in [23]. In [24], control algo-
rithms are designed, such that all followers converge into the
convex hull spanned by the leaders while the leaders traverse
polynomial trajectories. Containment control can theoretically
assure that the agents’ positions asymptotically converge to
desired positions inside the convex hull defined by the leaders.
Nonetheless, there remain issues to clearly address. For
instance, interagent collision is not necessarily avoided during
evolution under a fixed interaction topology if communication
weights applied by the followers are not consistent with agents
positions in the initial formation. In addition, followers may
leave the containment region during transit even though they
later converge to the convex hull prescribed by the leaders.
This may result in interagent collision and collisions of agents
with obstacles during transit or evolution.

We have recently applied the principles of continuum
mechanics to propose a new leader–follower paradigm for the
collective motion of an MAS in R

n (n = 1, 2, 3) [1], [2].
The fundamentals of homogeneous MAS deformation under
no communication and local communication are presented
in [2]. In [2], an MAS is treated as particles of a continuum
that deform in R

n under a homogeneous mapping. Note that
homogeneous deformation is a linear and nonsingular mapping
with a Jacobian that is time-varying but not spatially varying.
Due to linearity, a desired homogeneous transformation in R

n

can be uniquely related to the trajectories of n + 1 leaders,
where leaders are placed at the vertices of a deformable
polytope in R

n called a leading polytope. A desired homo-
geneous transformation of an MAS can be achieved under no
communication when positions of the leaders are predefined
for the follower agents over a finite horizon of time [2].
In addition, a desired homogeneous deformation can be
acquired by every follower agent through local communication
with n + 1 local agents, where: 1) interagent communication
among the followers is prescribed by a connected graph and

2) communication weights are all consistent with the initial
positions of agents [2]. In [1], we specified an upper limit for
deviation of each follower from the desired position prescribed
by a homogeneous transformation, where each follower only
accesses the positions of its in-neighbor agents but the desired
position is globally specified based on the trajectories chosen
by n + 1 leaders. We showed that this upper limit depends on
the maximum velocity of the leaders during evolution, total
number of agents, dimension of the motion space, control
gain applied by each follower, and the norm of the inverse
of the communication matrix. In addition, the polyhedral
communication topology proposed in [1] can be applied by
follower agents to acquire a desired homogeneous deformation
through preservation of some volumetric (area) ratios specified
based on the initial positions of the agents.

Continuum deformation of an MAS, which has some sim-
ilarity with the available containment control method, can
assure that interagent collision is avoided while the MAS has
the capability of large deformation. Furthermore, it can be
guaranteed that followers remain inside the transient convex
hull defined by the leaders’ positions at any time. Two issues
not addressed in the previous work include vanishing follow-
ers’ deviations from their desired positions during transition,
and robustness to communication failure. Therefore, this paper
has two main objectives. First, this paper shows that the
transient error, i.e., the difference between actual and desired
follower positions, vanishes during MAS evolution. Followers
are, therefore, shown not to exit the transient convex hull
defined by the leaders’ positions at any time t . For this
purpose, we first let each leader choose a finite polynomial of
order (h−1) ∈ N for its trajectory, connecting two consecutive
way points. Dynamics of order h ∈ N describes the evolution
of each follower and show how deviations of followers from
the desired positions converge to zero during transition while
each follower only accesses the state information of n+1 local
agents. The second contribution of this paper is to assure that
MAS evolution remains robust even during communication
failure. In this regard, this paper applies the method of
preservation of volumetric ratios developed in [1]. Without
loss of generality, MAS evolution in a plane (∈ R

2, n = 2) is
considered, and thus, each follower is allowed to communicate
with mi ≥ n + 1 = 3 local agents. Followers acquire desired
positions by preserving certain area ratios that are determined
based on the initial positions of the follower i and set of mi

agents adjacent to i . Because followers are not limited to
communicate with only three local agents, there is no restric-
tion on the total number of agents of the MAS, and MAS
evolution is robust to communication failure. Hence, if some
followers give up communication with other agents at some
time (during MAS evolution), a new communication topology
can be applied by the remaining followers, and homogeneous
deformation through local communication continues.

Asymptotic tracking of desired positions prescribed by a
homogeneous deformation must be distinguished from the
trajectory tracking problem. In a trajectory tracking problem,
desired displacements of the followers are the same, because
follower trajectories are prescribed by one or more leaders
with the same displacements, indicating a rigid transformation.
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For example, the trajectory chosen by a leader moving with
constant magnitude acceleration can be asymptotically tracked
by followers if they apply the second-order consensus algo-
rithm and update their accelerations based on both positions
and velocities of in-neighbor agents [24], [31]. In addition,
deviations of followers from the desired trajectories, prescribed
by three nonaligned leaders having the same displacements,
can converge to zero while leaders move if followers apply the
second-order consensus dynamics [24]. Under a homogeneous
deformation, on the other hand, interagent distances can be
expanded or contracted to support deformation. The volume
occupied by the MAS can be contracted if passing through
a narrow channel is required, where deviations of followers
from the desired positions can vanish during deformation.

This paper is organized as follows. We first summarize
pertinent graph theory and homogeneous deformation concepts
in Sections II and III. Section IV presents a formal problem
statement. In Sections V and VI, the asymptotic tracking of
desired positions and the interagent collision avoidance are
mathematically proved. Continuum deformation of an MAS
using a polyhedral communication topology is discussed in
Section VII. Simulation results are shown in Section VIII
followed by concluding remarks in Section IX.

II. PRELIMINARIES

A. Graph Theory Notions

Let G = (V , E) be a directed graph that prescribes intera-
gent communication of an MAS with nodes V = {1, 2, . . . , N}
and edges E ⊂ V ×V . A node i can access state information of
node j if ( j, i) ∈ E . The in-neighbor set Ni = { j : ( j, i) ∈ E}
defines the agents whose states are accessible to the node i ,
where |Ni | denotes the cardinality of Ni . Let graph G include
boundary graph ∂� and subgraph �, where V� is the node
set of subgraph �. Then, the nodes belonging to the boundary
∂� are defined as

V∂� = { j ∈ V \ V� : ∀i ∈ V� : ( j, i) ∈ E}.
Two nodes i and j in directed graph G are connected if
there is a directed path from i to j and a directed path from
j to i . A directed graph G is weakly connected if substituting
directed edges by undirected edges yields a connected graph.
A directed graph is strongly connected if every two graph
nodes i and j are connected. A vertex or node set V includes
a leader set

VL = {i ∈ V : |Ni | = 0}
and a follower set

VF = V \ VL .

In other words, every node i of communication graph G
represents either a leader agent that moves independently,
or a follower agent, which updates its position based on
the positions of the agents belonging to the in-neighbor
set Ni .

Definition 1: A node k of communication graph G is called
a leader if |Nk | = 0. Leader agents are defined by a leader set

VL = {k : |Nk | = 0}.

Leaders are identified by 1, 2, . . . , Nl , thus

VL = {1, 2, . . . , Nl }.
Definition 2: A node i of communication graph G is called a

follower if it belongs to a follower set VF = V \VL . Followers
are identified by Nl + 1, Nl + 2, . . . , N , thus

VF = {Nl+1, Nl+2, . . . , N}.

B. Geometric Notions

Let

r =
n∑

l=1

xl êl (1)

denote linear space M ⊂ R
n position with orthonormal unit

basis (ê1, . . . , ên). M can be rewritten as an indirect sum

M = Mp ⊕ Mq

where Mp ⊂ R
p and Mq ⊂ R

n−p are the linear sub-
spaces of M with orthonormal unit basis (ẽ1, . . . , ẽp) and
(ẽp+1, . . . , ẽn). For each r ∈ M , there exists unique rp ∈ Mp

and rq ∈ Mq , such that r = r̃ + rq , where

r̃ =
p∑

l=1

x̃l ẽl

rq =
n∑

l=p+1

x̃l ẽl .

1) Evolution Space: Agents of an MAS evolve in a linear
space M ∈ R

n , called the evolution space, where agent
position is given by

ri =
n∑

q=1

xq,i (t)êq .

2) Deformation Subspace: Let the evolution of agents in R
n

be guided by p + 1 (p ≤ n) leaders located at the vertices of
a transient p-dimensional convex polytope belonging to the
linear subspace Mp ⊂ M with unit basis (ẽ1, . . . , ẽp). The
linear subspace Mp is called the deformation subspace.

III. HOMOGENEOUS DEFORMATION OF AN MAS
A continuum (deformable body) is a continuous region

in R
n , containing an infinite number of infinitesimal particles.

Initial positions of material particles of a continuum are called
material coordinates and denoted by R = R̃ ⊕ Rq (R ∈ Rn ).
Let the deformation of a continuum in the linear subspace Mp

be defined by a mapping r̃(R̃, t) ∈ R
p , where

• The Jacobian Q is nonsingular. Note that Q(R̃, t) =
(∂ r̃(R̃, t)/∂ R̃) ∈ R

p×p .
• r̃(R̃, t0) = R̃ (t0 denotes the initial time).

Because Q(R̃, t) is nonsingular, no two particles of the
continuum occupy the same position during deformation.
This interesting property can guarantee the avoidance of the
interagent collision if MAS evolution is treated as contin-
uum deformation. A continuum deformation is called homo-
geneous if the Jacobian matrix Q is only a function of
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time [Q = Q(t)]. Homogeneous deformation of an MAS is,
therefore, given by

r̃i (t) = Q(t)R̃i + D(t), i ∈ V (2)

where

R̃i =
p∑

l=1

X̃i,l ẽl =
n∑

l=1

Xi,l êl

and

r̃i =
p∑

l=1

x̃i,l ẽl =
n∑

l=1

xi,l êl

are the initial and current positions of the agent i , respectively,
and D ∈ R

n is a rigid body displacement vector.

A. Homogeneous Deformation of the Leading Polytope

Let r̃1(t), r̃2(t), . . ., r̃ p+1(t) be the positions of Nl = p + 1
leaders at the vertices of a p-dimensional leading convex
polytope evolving in linear subspace Mp ⊂ M ⊂ R

n . Then

∀t ≥ t0, Rank[r̃2 − r̃1 . . . r̃ p+1 − r̃1]
= Rank[r2 − r1 . . . rp+1 − r1] = p (3)

and the position of the follower i (i ∈ VF ) at a time t can be
uniquely expressed as follows:

r̃i (t) = r̃1(t) +
p+1∑

k=2

ai,k(t)(r̃k(t) − r̃1(t))

=
⎛

⎝1 −
p+1∑

k=2

ai,k

⎞

⎠ r̃1(t) +
p+1∑

k=2

r̃k(t) =
p+1∑

k=1

ai,k r̃k(t) (4)

where ai,1(t) = 1 − (ai,2 + ai,3 + · · · + ai,p+1) or

∑

k∈VL

ai,k(t) =
p+1∑

k=1

ai,k (t) = 1. (5)

Let r̃ j (t) ( j ∈ V spanning the index number of leader k ∈ VL

or follower i ∈ VF ) in (4) be replaced by

r̃ j (t) =
p∑

l=1

x̃l, j (t)ẽl , j ∈ V (6)

where the values of ẽ1, ẽ2, . . . , ẽp form the orthogonal unit
basis of the Cartesian coordinate system, and xl, j (t) is the
lth (l = 1, 2, . . . , p) agent j ∈ V position component in
deformation subspace Mp . Then, (4) becomes

p∑

l=1

x̃l,i (t)ẽl =
p∑

l=1

p+1∑

k=1

ai,k(t)x̃l,k(t)ẽl . (7)

By considering (5) and (7), parameter ai,k (t) (i ∈ VF and
k ∈ VL ) is uniquely determined at any time t . Under a
homogeneous deformation, parameter ai,k(t) (i ∈ VF and
k ∈ VL) remains time invariant and is denoted by αi,k . Thus,
the desired position of the follower i ∈ VF in deformation
subspace Mp becomes

r̃i,HT(t) =
p+1∑

k=1

αi,k r̃k(t) (8)

where αi,k is uniquely determined based on the initial positions
of agent i and the p + 1 leaders by
⎡

⎢⎢⎢⎢⎢⎣

X̃1,1 X̃1,2 . . . X̃1,p+1

X̃2,1 X̃2,2 . . . X̃2,p+1
...

...
. . .

...

X̃ p,1 X̃ p,2 . . . X̃ p,p+1
1 1 . . . 1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

αi,1
αi,2
...

αi,p

αi,p+1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

X̃1,i

X̃2,i
...

X̃ p,i

1

⎤

⎥⎥⎥⎥⎥⎦
. (9)

The desired position of follower i ∈ VF (in evolution space)
is given by

ri,HT(t) =
p+1∑

k=1

αi,krk(t). (10)

Note that the entries of Jacobian matrix Q(t) and
vector D(t) can be uniquely determined, based on the com-
ponents of the leaders’ positions [2], by

Jt = [Ip ⊗ L0 Ip ⊗ 1]−1 Pt (11)

where 1 ∈ R
p+1 is the one vector, Ip ∈ R

p×p is the identity
matrix, “⊗” is the Kronecker product symbol

Jt = [Q11 . . . Q pp D1 . . . Dp]T ∈ R
(p+1)p

Pt = [x̃1,1 . . . x̃1,p+1 . . . x̃ p,1 . . . x̃ p,p+1]T ∈R
(p+1)p

and

L0 =
⎡

⎢⎣
X̃1,1 . . . X̃ p,1

...
. . .

...

X̃1,p+1 . . . X̃ p,p+1

⎤

⎥⎦ ∈ R
(p+1)×p.

B. 2-D Deformation

Suppose Ri = X̃i ẽx + Ỹi ẽy and ri (t) = x̃i(t)ẽx + ỹi (t)ẽy

denote the initial and current positions of agent i ∈ V
expressed in the Cartesian coordinate system with unit basis
(ẽx , ẽy). Homogeneous deformation of a continuum in the
X̃ Ỹ plane is given by

[
x̃i (t)
ỹi (t)

]
=
[

Q11(t) Q12(t)
Q21(t) Q22(t)

] [
X̃
Ỹ

]
+
[

D1(t)
D2(t)

]
. (12)

If the leader agents remain nonaligned at any time t , then the
entries of Jacobian matrix Q ∈ R

2×2 and the vector D ∈ R
2

can be related to the X̃ and Ỹ components of the leaders’
positions as follows [1], [2]:
⎡

⎢⎢⎢⎢⎢⎢⎣

Q11(t)
Q12(t)
Q21(t)
Q22(t)
D1(t)
D2(t)

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

X̃1 Ỹ1 0 0 1 0
X̃2 Ỹ2 0 0 1 0
X̃3 Ỹ3 0 0 1 0
0 0 X̃1 Ỹ1 0 1
0 0 X̃2 Ỹ2 0 1
0 0 X̃3 Ỹ3 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡

⎢⎢⎢⎢⎢⎢⎣

x̃1(t)
x̃2(t)
x̃3(t)
ỹ1(t)
ỹ2(t)
ỹ3(t)

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(13)

Furthermore, the desired position ri,HT(t) specified by the
homogeneous deformation becomes

ri,HT = αi,1r1(t) + αi,2r2(t) + αi,3r3(t) (14)
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Fig. 1. Initial formation and communication topology G .

where time invariant parameters αi,1, αi,2, and αi,3 are
obtained from

⎡

⎣
X̃1 X̃2 X̃3

Ỹ1 Ỹ2 Ỹ3
1 2 3

⎤

⎦

⎡

⎣
αi,1
αi,2
αi,3

⎤

⎦ =
⎡

⎣
X̃i

Ỹi

1

⎤

⎦. (15)

Sections IV and V will show how each follower i ∈ VF

can acquire desired position ri,HT(t) through local commu-
nication, where a transient error of follower i vanishes during
MAS evolution.

IV. PROBLEM STATEMENT AND OBJECTIVES

A. Motivation

Containment control can be applied to theoretically ensure
the asymptotic convergence of MAS evolution to a final forma-
tion when all communication weights are arbitrarily chosen to
be positive [32]. However, implementing containment control
does not necessarily assure interagent collision avoidance. For
example, consider an MAS with six agents, three leaders, and
three followers, with an initial formation and communication
topology, as shown in Fig. 1. Let leader agents be placed at the
vertices of a leading triangle and let them horizontally move
according to

rk(t) = r̃k(t) = Rk + 1

3
t êx , k = 1, 2, 3 (16)

where Rk = R̃k = Xk êx + Yk êy and rk(t) = xk(t)êx + yk(t)êy

are the initial and current positions of leader k (k = 1, 2, 3),
respectively. In addition, let followers update their positions
according to

ṙi = g
∑

j∈Ni

wi, j (r j − ri ) (17)

where g = 2 and the weights of communication w4,1 =
1/3, w4,5 = 1/3, w4,6 = 1/3, w5,2 = 1/3, w5,4 = 1/3, w5,6 =
1/3, w6,3 = 0.5, w6,4 = 0.25, w6,5 = 0.25 are all positive.
Since leader agents move horizontally, the Y coordinates of
all followers remain invariant during evolution, so the Y
position components of followers 4 and 5 remain identical
during MAS evolution (see Fig. 1). Shown in Fig. 2(a) are
the X components of actual positions of the followers 4 and
5 versus time. As shown in Fig. 2(a), these two agents collide
at t = 0.45 s as the Y components of their initial positions
are identical. All containment control protocol requirements
were satisfied yet collision occurred. This is because the
communication weights of the followers are not consistent
with the initial MAS formation.

Fig. 2. Interagent collision during MAS evolution. (a) X components of
followers 4 and 5. (b) Formation of the MAS at time t = 0.45 s.

This issue can be managed by treating an MAS as particles
of a continuum where transient desired positions are prescribed
by a nonsingular deformation mapping. Due to nonsingular-
ity of the continuum deformation, desired positions of no
two agents are the same during evolution while interagent
distances can be expanded or contracted. Collision is thus
assured, and the MAS has the ability to pass through a narrow
passage. Without loss of generality, consider a homogeneous
deformation in R

n (n = 1, 2, 3) uniquely obtained by the
trajectories of p + 1(p ≤ n) leaders located at the vertices
of a convex polytope. Followers acquire the transient desired
homogeneous mapping prescribed by the leaders’ positions
through local communication. For this purpose, we apply
containment control, such that a homogeneous deformation is
prescribed by the independent evolution of p +1 leaders. Fol-
lowers locally communicate with weights that are consistent
with the initial positions of their in-neighbor agents.

B. Problem Statement and Objectives

Consider an MAS with N agents that moves in R
n

(n = 1, 2, 3) under the containment control protocol. The
MAS contains p+1 leaders (VL = {1, 2, . . . , p+1}) located at
the vertices of the leading polytope. The remaining N − p −1
followers (VF = {p + 2, . . . , N}) are distributed inside the
leading polytope at initial time t0.

Agent i ’s position is updated by

dhri

dth
= ui (18)

where

ui =

⎧
⎪⎪⎨

⎪⎪⎩

0, i ∈ VL
h∑

k=1

βk
dh−k

dth−k
(ri,d − ri ), i ∈ VF .

(19)

Note that

ri,d =
∑

j∈Ni

wi, j r j (20)

is the local desired position for the follower i and wi, j ∈ R+ is
the communication weight of the follower i ∈ VF . In addition,
βk ∈ R+ (k = 1, 2, . . . , p) is a constant control gain. The
parameters βk must be chosen, such that the roots of the agent
dynamics characteristic equations are all located in the open
left half s-plane. It is noticed that the leader i ∈ VL chooses the
polynomial vectors of order p −1 for its trajectory connecting
two consecutive way points.
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Fig. 3. Schematic of deviation of followers during transition.

To model MAS evolution as continuum deformation, fol-
lowers, which are initially placed inside the leading poly-
tope, choose communication weights that are consistent with
agents’ initial positions. The characteristic equations for the
followers’ communication weights were given in [1] and [2]
and will be obtained in Section IV-A of this paper.
Rastgoftar and Jayasuriya [1], [2] show how followers can
acquire final desired positions prescribed by a homogeneous
deformation after leaders stop. However, followers deviate
from the desired positions during transition because of single
integrator dynamics. If this deviation is large, the followers
may leave the containment region. For example, consider the
initial, intermediate, and final formations of an MAS shown
in Fig. 3. The MAS consists of six agents (three leaders and
three followers) and applies the suggested first-order leader–
follower model in [1] and [2] to evolve in the plane (∈ R

2).
While the follower agents ultimately reach the desired final
formation positions, deviations of the followers are consider-
able at intermediate time t = 15 s and followers 4 and 6 depart
the leading triangle.

Deviations of followers ultimately converge to zero during
transition, where followers only access the state information
of local agents. This problem is considered below in Section V
that prescribes how followers can asymptotically track desired
positions if leaders and followers update their positions accord-
ing to the dynamics in (18) and (19).

MAS homogeneous deformation is achieved through pre-
serving some volumetric ratios specified based on initial agent
positions. Homogeneous deformation under the preservation
of volumetric ratios is advantageous, because followers are
allowed to interact with more than n + 1 local agents, where
fixed and switching communication topologies can be applied
by followers to acquire their desired positions through local
communication.

V. ASYMPTOTIC TRACKING OF DESIRED POSITIONS

A. Communication Topology

Let interagent communication be prescribed by graph G
where p + 1 nodes belonging to ∂� represent leaders and
the remaining (N − p − 1) nodes belonging to directed,
strongly connected subgraph � represent followers. Notice
that every follower i (i ∈ VF ) communicates with p + 1
local agents (|Ni | = p + 1). It is assumed that each leader
moves independently but its position is tracked by a follower.
Hence, leader–follower communication is unidirectional and

Fig. 4. Sample initial formation and communication topology.

shown by an arrow terminated at a follower. A typical MAS
communication graph to move in a plane (∈ R

2) is shown
in Fig. 4.

B. Communication Weights and Weight Matrix

Let follower i (i ∈ VF ) and p+1 adjacent agents belonging
to an in-neighbor set Ni = {i1, i2, . . . , i p+1} be initially placed
at Ri , Ri1 , Ri2 , . . ., Rip+1 , where

Rank[Ri2 − Ri1 . . . Rip+1 − Ri1 ]
= Rank[R̃i2 − R̃i1 . . . R̃ip+1 − R̃i1 ] = p. (21)

Then, the initial position of follower i can be uniquely
expanded as a linear combination of the initial positions of
the p + 1 adjacent agents by

Ri =
p+1∑

k=1

wi,ik Rik (22)

where
p+1∑

k=1

wi,ik = 1.

Communication weight wi,ik is uniquely determined by solving
the following set of p + 1 linear algebraic equations:
⎡
⎢⎢⎢⎢⎢⎣

X̃1,i1 X̃1,i2 . . . X̃1,i p+1

X̃2,i1 X̃2,i2 . . . X̃2,i p+1
...

...
. . .

...

X̃ p,i1 X̃ p,i2 . . . X̃ p,i p+1

1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

wi,i1
wi,i2

...
wi,i p

wi,i p+1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

X̃1,i

X̃2,i
...

X̃ p,i

1

⎤
⎥⎥⎥⎥⎥⎦

.

(23)

It is assumed that each follower i (∀i ∈ VF ) is initially
placed inside the convex communication polytope whose ver-
tices are occupied by the p + 1 in-neighbor agents. There-
fore, communication weights are all positive. Communication
weights for the initial distribution shown in Fig. 4 are given
by (23) and listed in Table II.

Weight matrix W ∈ R
(N−p−1)×N with entry Wij is given by

Wij =

⎧
⎪⎨

⎪⎩

wi+p+1, j > 0, if ( j, i + p + 1) ∈ E

−1, if i + p + 1 = j

0, otherwise.

(24)
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Let weight matrix W be partitioned as follows:

W = [B ∈R
(N−p−1)×(p+1) A∈R

(N−p−1)×(N−p−1)]. (25)

The matrix A is Hurwitz as shown in the Appendix.
Remark 1: Let

ŨI,q = [X̃l,1 . . . X̃l,p+1]T ∈ R
p+1

and

Z̃ I,q = [X̃l,p+2 . . . X̃l,N ]T ∈ R
N−p−1

denote the lth components of the initial positions of the leaders
and the followers, respectively. Then

AZ̃ I,l + BŨI,l = 0. (26)

C. Difference Between Communication Weight
and Communication Quality

In this paper, communication weights are based on inter-
agent distances determined from initial positions. They do
not represent the quality (strength) of a communication link
between two connected nodes. As will be demonstrated in
Theorem 1, interagent communication can be specified by
a directed graph. This directed graph can define interagent
communication links, i.e., the in-neighbor agent(s) for each
follower, based on link quality or strength as well as energy
efficiency [33]. Each follower then updates its reference posi-
tion based on the positions of its in-neighbor agents with the
weights that are consistent with the positions of agents.

Theorem 1: Let MAS leader and follower initial positions
be given. If the positions of the p + 1 leaders satisfy the rank
condition (3), then the matrix

WL = −A−1 B =
⎡

⎢⎣
αp+2,1 . . . αp+2,p+1

...
...

αN,1 . . . αN,p+1

⎤

⎥⎦ (27)

is invariant for any arbitrary graph G = (V , E) with the
directed and strongly connected subgraph � = (VF , EF )
(EF ∈ VF ×VF ), where |Ni | = p+1 (i ∈ VF ), the positions of
the agents belonging to the in-neighbor set Ni satisfy the rank
condition (21), and the communication weights are defined
by (23).

Proof: Since leaders’ positions satisfy rank condition (3),
X̃l,i , the lth (l = 1, 2, . . . , p) component of an initial follower
i position, can be uniquely expressed as a linear combination
of the lth leader position components as follows:

X̃l,i =
p+1∑

k=1

αi,k X̃l,k , i ∈ VF , k ∈ VL (28)

where αi,k is uniquely determined by applying (9). Let

ŨI,l = [X̃l,1 . . . X̃l,p+1]T ∈ R
p+1 and Z̃ I,l = [X̃l,p+2 . . .

X̃l,N ]T ∈ R
N−p−1 denote the lth components of the initial

positions of the leaders and followers, respectively. Then,
Z̃ I,l and ŨI,l are related by

Z̃ I,l = WLŨI,l . (29)

Note that row i of (29) denotes the lth component of the
initial follower i + p + 1 ∈ VF position expressed as a linear

combination of the lth components of the positions of the
leaders according to (28).

On the other hand, X̃l,i can be expressed as a linear
combination of X̃l,i1 , X̃l,i2 , . . . , X̃l,i p+1 , where the initial
positions of the adjacent agents satisfy rank condition (21).
Therefore, (23) has unique solutions for the communication
weights of a follower agent i (∀i ∈ VF ). By considering
(24) and (25), it is concluded that

W

[
ŨI,l

Z̃ I,l

]
= AZ̃ I,l + BŨI,l = 0. (30)

Since subgraph � is strongly connected and communication
weights are positive, matrix A is Hurwitz [2]. Therefore

Z̃ I,l = −A−1 BŨI,l . (31)

By equating the right-hand sides of (29) and (31), it is
concluded that WL = −A−1 B .

Corollary: The lth components of the followers’ desired
positions prescribed by a homogeneous transformation of the
initial configuration can be defined as

Z̃l,HT(t)= WLŨl(t)=
⎡
⎢⎣

αp+2,1 . . . αp+2,p+1
... . . .

...
αN,1 . . . αN,p+1

⎤
⎥⎦

⎡
⎢⎣

x̃l,1
...

x̃l,p+1

⎤
⎥⎦

(32)

where Z̃l,HT(t) = [x̃l,p+2,HT(t) . . . x̃l,N,HT(t)]T ∈ R
N−p−1,

and

x̃l,i,HT(t) =
p+1∑

k=1

αi,k x̃l,k(t) (33)

is the lth component of desired position ri,HT(t) (i ∈ VF )
given by (10).

D. Dynamics of Agents

1) Continuous Time Domain: Let

ri =
n∑

l=1

xl,i êl, i ∈ V

expressed with respect to the Cartesian coordinate system with
unit basis (ê1, . . . , ên) be updated by (18) and (19), then
xl,i (t), the lth component of the position of the follower i ,
is updated by the following dynamics:

dh xl,i

dth
=

h∑

k=1

βk
dh−k

dth−k

⎛

⎝
∑

j∈Ni

wi, j xl, j − xl,i

⎞

⎠. (34)

Equation (34) is row i− p−1 of the following matrix dynamics
of order h:

dh Zl

dth
− A

h∑

k=1

βk
dh−k

dth−k
Zl = B

h∑

k=1

βk
dh−k

dth−k
Ul (35)

where

Ul = [xl,1 . . . xl,p+1]T ∈ R
p+1

and

Zl = [xl,p+2 . . . xl,N ]T ∈ R
N−p−1
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denote the lth leader and follower position components,
respectively.

Notice that the MAS evolution dynamics given by (35) is
asymptotically stable if the characteristic polynomial

|sh I − (β1sh−1 + · · · + βh−1s + βh)A| = 0 (36)

is Hurwitz.
Remark 2: Given A and B specified by (24) and (25), the

lth components of the transient desired positions of the
followers in R

n are obtained by

Zl,HT = WLUL(t) (37)

where

Zl,HT = [xl,p+2,HT . . . xl,N,HT]T ∈ R
N−p−1

and

xl,i,HT(t) =
p+1∑

k=1

αi,k xl,k(t), i ∈ VF .

Transient Error Dynamics: The right-hand side of (35) can
be rewritten as

B
h∑

k=1

βk
dh−k

dth−k
Ul = AA−1 B

h∑

k=1

βk
dh−k

dth−k
Ul

= −A
h∑

k=1

βk
dh−k

dth−k
WLUl

= −A
h∑

k=1

βk
dh−k

dth−k
Zl,HT. (38)

Thus, (35) is converted to

dh El

dth − A
h∑

k=1

βk
dh−k El

dth−k = dh Zl,HT

dth (39)

where El = Zl,HT − Zl is the lth component of the difference
between the global desired position and the actual position
of the follower. Because each leader trajectory is defined by a
finite order polynomial vector of order (h−1), dh Zl,HT/dth =
0 and El asymptotically converge to zero. In other words,
deviations of followers from the desired states prescribed by
homogeneous mapping (32) vanish during MAS evolution
while followers only interact with local agents.

Next, the discrete time dynamics for follower evolution is
presented.

2) Discrete Time Domain: Recall that the leader i ∈ VL

trajectory is defined by a polynomial vector of order
(h − 1) ∈ N. Therefore, dhri/dth (i ∈ VL) vanishes, and
we can assume that xl,i [K ] satisfies the following difference
equation:

h∑

k=0

σk xl,i [K + 1 − k] = 0 (40)

where

σk =

(
h
k

)
(−1)k

�th
(41)

and �t is the time increment. It is further assumed that the
position of the follower i ∈ VF is updated according to the
following difference equation of order h:

xl,i [K + 1] =
h−1∑

k=0

⎛

⎝− σk+1xl,i [K − k]

+ γk

∑

j∈Ni

wi, j (xl, j [K −k] − xl,i [K −k])
⎞

⎠ (42)

where the values of γ0, γ1, . . ., γh−1 are constant scalar
parameters.

Collective Dynamics: Equation (42) is row i − p − 1 of the
following matrix difference equation of order h:

Zl[K + 1] = −
h−1∑

k=0

σk+1 Zl[K − k]

+
h−1∑

k=0

γk(AZl[K − k] + BUl[K − k]). (43)

The dynamics of (43) is asymptotically stable if all the roots
of the characteristic equation

∣∣∣∣∣z
h +
(

h−1∑

k=0

σk+1 I − γk A

)
zh−k−1

∣∣∣∣∣ = 0 (44)

are inside the open disk with radius 1 with center located at
the origin. Next, rewrite (43) as follows:

h∑

k=0

σk Zl[K + 1 − k]

− A
h−1∑

k=0

γk(Zl [K − k] − Zl,HT[K − k]) = 0 (45)

where Zl,HT[K −k] = −A−1 BU [K −k]. By considering (40),
it is concluded that

h∑

k=0

σkUl[K + 1 − k] = 0. (46)

Hence
h∑

k=0

σk Zl,HT[K + 1 − k] = −
h∑

k=0

σk A−1 BUl[K +1− k] = 0

(47)

and (45) can be rewritten as follows:

Zl[K + 1] − Zl,HT [K + 1]

+
h−1∑

k=0

(σk I − γk A)(Zl[K − k] − Zl,HT[K − k])

= El[K + 1] +
h−1∑

k=0

(σk I − γk A)El[K − k] = 0. (48)

Characteristic equation is the same as (44), which is stable.
Therefore, transient error El = Zl − Zl,HT, and the difference
between the lth components of the actual and desired positions
of the followers converges to zero during MAS evolution.
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Fig. 5. Graphical representations of γI and γs .

VI. COLLISION AVOIDANCE

In this section, each follower is considered to be a ball
in R

n with radius ε > 0. Our objective is to specify sufficient
conditions to assure the avoidance of interagent collision and
collision of agents with obstacles during MAS evolution.

A. Constraint on Leaders’ Motion

1) Constraint 1: Leaders must choose trajectories that sat-
isfy rank condition (3) at each time t during MAS evolution.

2) Constraint 2: Leaders must choose trajectories, such that
the leading polytope does not collide with obstacles in the
motion field.

3) Constraint 3: The p + 1 leaders must choose their tra-
jectories, such that the desired positions of any two followers
never get closer than 2(δ + ε)

i, j ∈ V ∧ i 
= j, ||ri,HT(t) − r j,HT(t)|| ≥ 2(δ + ε). (49)

Note that

δ ≥ ||ri (t) − ri,HT(t)|| (50)

is considered the upper limit for the deviation of every follower
agent from desired position ri,HT(t) given by a homogeneous
deformation, when each follower acquires homogeneous defor-
mation through local communication. Furthermore, distance
of each follower from the boundaries of the leading polytope
must never become less than (δ + ε).

Theorem 2: Suppose m1 ∈ V and m2 ∈ V are the indices
of two agents with minimum separation distance

γI = ||Rm1 − Rm2 || (51)

in the initial formation. Let γs denote the minimum distance
of a follower from a boundary of the leading polytope in the
initial configuration. Graphical representations of γI and γs for
a typical initial distribution in the X̃ − Ỹ plane are illustrated
in Fig. 6. Let

δmax = min

{
1

2
(γI − 2ε), (γs − ε)

}
, (52)

then,
(

2(δ + ε)

2(δmax + ε)

)2

= (δ + ε)2

(δmax + ε)2 ≤ 1

is the lower limit for the magnitude of eigenvalues of Jacobian
matrix QT Q ∈ R

p×p .

Proof : By using polar decomposition, Q(t) =
Ro(t)UD(t), where Ro is orthogonal and UD is symmetric.
Therefore, UD

2 = QT Q and

λ(UD) =
√

λ(QT Q).

Because eigenvalues of Q all have positive real part, UD

has positive eigenvalues. Note that UD is the pure stretch
deformation matrix [34], thus, the minimum eigenvalue of the
matrix UD should not become less than (δ + ε)/(δmax + ε).
As described in Section III-A, entries of Q and D can be
uniquely related to the components of leader positions with
Eq. (11) if leaders’ positions satisfy the rank condition (3).
Therefore, it is required that leaders choose their trajectories
such that the minimum value of the smallest eigenvalues of
matrix

√
QT Q never becomes less than

λmin(
√

QT Q) = δ + ε

δmax + ε
. (53)

We will specify the upper limit δ for follower deviation from
the homogeneous transformation with the first- and second-
order dynamics as follows.

B. Follower Evolution

1) First-Order Dynamics: Let follower position agent
i ∈ VF be updated by the following first-order dynamics:

ṙi = g(ri,d − ri ). (54)

Then, the lth position components of the followers are updated
by the following first-order dynamics:

d Zl

dt
= g(AZl + BUl) = g A(Zl − Zl,HT) = g AEl . (55)

Transient error dynamics El = Zl,HT − Zl becomes

d El

dt
− g AEl = d Zl,HT

dt
(56)

and

El(t) = eg At El(t0) +
∫ t

t0
eg A(t−τ ) Żl,HTdτ. (57)

Because communication weights are consistent with the
agents’ initial positions

AZl(t0) + BUl(t0) = 0. (58)

Equation (58) implies that Zl,HT = Zl(t0) = −A−1 BUl(t0),
and consequently, El(t0) = Zl,HT(t0)−Zl(t0) in the right-hand
side of (57) vanishes. Hence

||El(t)|| =
∣∣∣∣

∣∣∣∣
∫ t

t0
eg A(t−τ ) Żl,HTdτ

∣∣∣∣

∣∣∣∣ ≤
||A−1||||Żl,HT||

g
. (59)

Here, it is assumed that the leaders are not necessarily
stationary but the maximum of the lth components of the
leader velocities do not exceed upper limit Vl at any time t
during MAS evolution. Therefore

∥∥∥∥
d Zl,HT

dt

∥∥∥∥ =
∥∥∥∥WL

dUl

dt

∥∥∥∥ ≤ Vl ||WL1|| (60)
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where 1 ∈ R
p+1 is one vector, and the positive matrix

WL ∈ R
(N−p−1)×(p+1) has rows that sum to 1. This implies

||WL1|| = ||1|| = √N − p − 1 (61)

and

||Żl,HT|| ≤ Vl
√

N − p − 1. (62)

By considering inequality (60), it is concluded that

||xl(t) − xl,HT(t)|| ≤ ||El || ≤ δl (63)

where

δl = ||A−1||√N − p − 1

g
Vl . (64)

Let V = (
∑p

l=1 Vl
2)1/2 be the maximum magnitude for the

leaders’ velocities at any time t during MAS evolution. Then

δ = ||A−1||√N − p − 1

g
V (65)

specifies an upper bound for the deviation of each follower
from the desired state defined by a homogeneous transforma-
tion. In other words

||ri (t) − ri,HT(t)|| ≤ δ = ||A−1||√N − p − 1

g
V . (66)

2) Higher Order Dynamics: As shown in Section IV, if
agent i ∈ V position is updated by the higher order dynamics
given by (18) and (19), then transient error El is updated by

dh El

dth
− A

h∑

k=1

βk
dh−k El

dth−k
= 0. (67)

Let K El = [El
T . . . (dh−1 El

T
/dth−1)]T ∈ R

h(N−p−1), then

˙K El = AE K El (68)

where

AE =

⎡
⎢⎢⎢⎢⎢⎢⎣

0N−p−1 IN−p−1 . . . 0N−p−1 0N−p−1

0N−p−1 0N−p−1 . . . 0N−p−1 0N−p−1

...
...

. . .
...

...

0N−p−1 0N−p−1 . . . 0N−p−1 IN−p−1

βh A βh−1 A . . . β2 A β1 A

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(69)

Note that IN−p−1 ∈ R
(N−p−1)×(N−p−1) and 0N−p−1 ∈

R
(N−p−1)×(N−p−1) are the identity and zero matrices, respec-

tively. In addition, AE ∈ R
h(N−p−1)×h(N−p−1) is Hurwitz.

Therefore

K El(t) = eAE (t−t0)K El(t0) (70)

is the solution of the first-order dynamics in (68). Notice that

||K El(t)|| ≤ ||K El(t0)||

=
√√√√

h∑

k=1

N∑

i=p+2

(
dh−k

dth−k

(
xl,i (t0) −xl,i,HT(t0)

))2

. (71)

This implies that, for the follower i ∈ VF

||ri (t) − riH T (t)|| =
√√√√

h∑

k=1

(
dh−k

dth−k
(xl,i (t0) − xl,i,HT(t0))

)2

is less than δ = ||K Eq(t0)|| at any time t during MAS
evolution. Hence, if leaders move in such a way that the
inequality (71) is satisfied, the avoidance of interagent col-
lision is guaranteed.

Remark 3: Parameters β1, . . . , βh should be chosen, such
that all the eigenvalues of the matrix AE are located in the
open left half s-plane to ensure the stability of the MAS
homogeneous deformation.

Remark 4: El(t0) = Zl,HT(t0) − Zl(t0), the first partition of
the vector Kl (t0) ∈ R

h(N−p−1), but the remaining partitions
[(d El(t0)/dt), . . . , (dh−1 El(t0)/dth−1)] are not necessarily
zero. If Kl(t0) = 0 is a zero vector, then the transient devi-
ation of each follower from desired state (||ri(t) − riH T (t)||,
∀i ∈ VF ) vanishes during MAS evolution, while followers
only access the positions of their in-neighbor agents. In other
words, homogeneous transformation is perfectly tracked due to
zero deviations of the followers from the state of homogeneous
deformation if

dk Zl(t0)

dtk
= dk Zl,HT(t0)

dtk
= WL

dkUl(t0)

dtk
, k =1, 2, . . . , h−1.

VII. AREA PRESERVATION METHOD

In this section, we introduce an alternative method for
achieving homogeneous MAS deformation under local com-
munication, where each follower i is allowed to interact with
mi ≥ p+1 local agents. Therefore, the continuum deformation
of an MAS under switching topologies can be assured, even if
some of the followers do not communicate with other agents
during MAS evolution. In addition, the convergence rate of the
MAS evolution can be enhanced as followers are permitted to
increase communications.

Let G = {G1, G2, . . . , Gnt } be the set of interagent com-
munication graphs applied by the followers to evolve in R

n .
It is assumed that the graph Gk = �k ⊕ ∂�k specifies
interagent communication for any time t ∈ [tk−1, tk ], where
the values of t0, t1, . . ., tnt are the switching times, connected
subgraph �k defines communication among the followers,
and |Ni (t)| ≥ p + 1 for every node i belongs to �k .
This implies that the followers are permitted to interact with
more than mi (t) ≥ p + 1 local agents. Notice that the
nodes belonging to ∂�k representing leader agents remain
unchanged but the total number of the nodes and edges of
subgraph �k can change when switching occurs. A recently
developed follower evolution model based on the preservation
of volumetric ratios [1] is considered in the continuation of this
section. We still desire that the collective motion of the agents
is prescribed by a homogeneous mapping. Without loss of
generality, we consider an MAS evolution problem in a plane
(∈ R

2). MAS evolution is guided by three leaders placed at
the vertices of a leading triangle, while followers are inside the
leading triangle. Follower i ∈ VF can interact with mi (t) ≥ 3
local agents and acquire desired positions by preserving area
ratios that are consistent with the agents positions.
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Fig. 6. Communication polygon i,k for all t ∈ [tk−1, tk ].

A. Assumption

For MAS evolution under area preservation, it is
assumed that the evolution and deformation spaces are the
same (M = Mp).

B. Communication Topology

Let graph Gk specify interagent communication for all
t ∈ [tk−1, tk], where a follower agent i can access the
positions of adjacent agents i1,k, i2,k, . . . , imi ,k . Consider a
communication polygon i,k for the follower agent i whose
vertices are occupied by agents i1,k, i2,k, . . . , imi ,k . Fig. 6
shows communication polygon i,k considered as the union
of mi triangles, where the agents i , i j,k , i j+1,k are placed at
the vertices of the j th ( j = 1, 2, . . . , mi−1) triangle.

C. Area Weights

Consider communication polygon i,k with net area ari,k(t)
at time t ∈ [tk−1, tk] (k = 1, 2, . . .). Let ri = xi êx + yi êy ,
r j = x j êx +y j êy , and r j+1 = x j+1êx +y j+1êy be the positions
of the follower i and the adjacent agents i j,k and i j+1,k, where
êx and êy are the orthogonal unit bases for the xy plane. The
area of the j th triangle inside communication polygon i,k at
time t ∈ [tk−1, tk] is given by

ari, j,k = 1/2

∣∣∣∣∣∣

xi yi 1
xi j,k yi j,k 1

xi j+1,k xi j+1,k 1

∣∣∣∣∣∣
= Oij,k xi + Pij,k yi + Qij,k . (72)

The area of the polygon i,k does not depend on the
position of the follower agent i , therefore

mi∑

j=1

Oij,k =
mi∑

j=1

Pij,k = 0 (73)

ari,k(t) =
mi∑

j=1

Qij,k . (74)

Let ARi, j,k = ari, j,k(tk−1) and ARi,k = ari,k(tk−1), then

AWi, j,k = ARi, j,k

ARi,k
, i ∈ VF , j ∈ Ni (75)

is the j th area weight for follower i during t ∈ [tk−1, tk].

D. Cost of Homogeneous Deformation

Consider

Ji,k (t) = 1

2

mi∑

j=1

(ari, j,k(t) − AWi, j,kari,k(t))
2 (76)

as the cost imposed on the follower i to update its current
position, such that the transient area weight

awi, j,k(t) = ari, j,k

ari,k
(77)

remains as close as possible to area weights AWi, j,k . Note that
the cost Ji,k (t) (∀i ∈ VF ) vanishes at all times t ∈ [tk−1, tk ], if
agents’ positions at time t ∈ [tk−1, tk] satisfy the homogeneous
transformation.

E. Desired Follower Positions

Let cost function Ji,k (t) be locally minimized at rid ,k =
xid ,k êx + yid ,k êy . Then, by satisfying (∂ Ji,k/∂xi ) = 0 and
(∂ Ji,k/∂yi ) = 0, the x and y components of rid ,k are obtained
as follows:

[
xid ,k

yid ,k

]
= −

⎡

⎢⎢⎢⎢⎢⎣

mi∑

j=1

Oij,k
2

mi∑

j=1

Oij,k Pi j,k

mi∑

j=1

Oij,k Pi j,k

mi∑

j=1

Pij,k
2

⎤

⎥⎥⎥⎥⎥⎦

−1

×

⎡

⎢⎢⎢⎢⎢⎣

mi∑

j=1

Oij,k Qi j,k −
mi∑

j=1

mi∑

q=1

AWi, j,k Oi j,k Qiq,k

mi∑

j=1

Oij,k Qi j,k −
mi∑

j=1

mi∑

q=1

AWi, j,k Oi j,k Qiq,k

⎤

⎥⎥⎥⎥⎥⎦
.

(78)

F. MAS Evolution Dynamics

It is assumed that follower i ∈ VF updates its position
according to

ṙi = g(rid ,k − ri ) (79)

where ri and rid ,k are the actual and desired positions of the
agents i in evolution space, respectively. Equilibrium states
denoted by rid ,k(t) are locally stable, because the velocity of
follower i is directed toward equilibrium state [rid ,k(t)] at any
time t ∈ [tk−1, tk ], where level curves Ji,k = constant are all
convex.1 Therefore, J̇i,k ≤ 0 in the vicinity of rid ,k and cost
function Ji,k(t) remain bounded. Consequently, the total cost
for homogeneous mapping

Jk(t) =
N∑

i=4

Ji,k (t) (80)

remains bounded, and the MAS evolution dynamics is locally
stable. In the last switch (t ∈ [tnt−1, tnt ]) where interagent
communication is prescribed by Gnt , area weight AWi, j,nt

(i ∈ VF , j ∈ V ) is calculated based on the positions of

1The level curves Ji,k = constant are ellipses centered at the origin (Please
see the Fig. 8).
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Fig. 7. Schematic of the 1-D homogeneous deformation in the xy plane.

TABLE I

FOLLOWER COMMUNICATION WEIGHTS IN SCENARIO I

the agents at time t = tnt −1, and Ji,nt −1 asymptotically
tends to zero when the leaders stop. Therefore, the final
MAS formation is a homogeneous transformation of the agent
configurations at time t = tnt −1.

VIII. SIMULATION RESULTS

In this section, we present the results of simulating a 1-D
homogeneous deformation in a 2-D evolution space and a 2-D
homogeneous deformation in a 3-D evolution space. For the
1-D homogeneous transformation, the deformation subspace
Mp is moving. Fig. 7 shows the deformation subspace Mp

with unit vector ẽx rotating in the X − Y plane. For the
2-D homogeneous transformation, the deformation subspace
is stationary, thus unit vectors ẽx and ẽy are fixed.

A. 1-D Homogeneous Deformation in a 2-D Space

Consider an MAS consisting of six agents (two leaders and
four followers) evolving in the X − Y plane. As shown in
Fig. 7, agents are initially placed along leading line segments
defined by the leaders’ positions. Initial positions of the leaders
are listed in Table I. The unit vector

ẽx (0) = (X2 − X1)êx + (Y2 − Y1)êy√
(X2 − X1)2 + (Y2 − Y1)2

is determined at the initial time 0. Then,
X̃i = Ri · ẽx (0) is obtained as listed in Table I, and
communication weights are determined by applying (23).
Note that for the 1-D homogeneous deformation, (23)
simplifies to

wi,i1 = X̃i2 − X̃i

X̃ i2 − X̃i1

wi,i2 = X̃i − X̃i1

X̃i2 − X̃i1

. (81)

Follower communication weights are listed in the last two
columns of Table I.

Fig. 8. Level curves Ji,k = constant.

Fig. 9. Leader paths in examples 1 and 2.

Fig. 7 shows the formations of the agents at different times
when followers update the x and y components of their
positions according to (54).

B. 2D Homogeneous Deformation in a 3D Space

In this section, we consider a MAS consisting of 14 agents
(3 leaders and 11 followers) moving in x − y − z space with

unit basis (êx ,êy , êz). The MAS deforms in the X̃ − Ỹ plane
with orthogonal unit basis (ẽx ,ẽy) where ẽx = 0.3536êx +
0.6124êy+0.7071êz and ẽy = 0.3536êx+0.6124êy−0.7071êz.
The initial MAS formation in X̃ − Ỹ is shown in Fig. 1. Each
follower is considered to be a disk with radius ε = 0.025m,
where the minimum distance among the followers at initial
time t0 = 0s is γI = 2(δmax + ε) = ||R9 − R10|| = 0.4199m
and δmax = (γI /2)−ε = 0.1850m. We consider four different
scenarios for collective motion of the MAS in the X̃ −Ỹ plane.
In the first two examples leaders negotiate a narrow channel
and move with constant velocities on straight paths shown in
Fig. 9. The X̃ and Ỹ components of the leaders positions are
given by

Leader 1:

⎧
⎪⎨

⎪⎩

x̃1(t) = 8

T
t − 5 0 ≤ t ≤ T

ỹ1(t) = 2

T
t − 4 0 ≤ t ≤ T

Leader 2:

⎧
⎪⎨

⎪⎩

x̃2(t) = 10

T
t 0 ≤ t ≤ T

ỹ2(t) = −1

T
t + 1 0 ≤ t ≤ T

Leader 3:

⎧
⎪⎨

⎪⎩

x̃3(t) = 6

T
t − 3 0 ≤ t ≤ T

ỹ3(t) = −3

T
t + 5 0 ≤ t ≤ T

(82)

where T denotes the time when the leaders arrive at their final
destinations inside the narrow channel.

Entries of Jacobian Q ∈ R
2×2 and vector D ∈ R

2×2 of
the desired homogeneous transformation are obtained based
on the X̃ and Ỹ components of the leaders positions are
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Fig. 10. Entries of Jacobian matrix Q and vector D.

Fig. 11. Eigenvalues of Jacobian matrix (QT Q)1/2.

shown versus t/T in Fig. 10. Note that Q and D define
homogeneous deformation in the X̃ − Ỹ plane. Furthermore,

eigenvalues of
√

QT Q are depicted versus
t

T
in Fig. 11. As

shown, λmin(
√

QT Q) = 0.4322 is the minimum eigenvalue
of matrix

√
QT Q.

In the first and second examples shown above, followers
apply first and second order linear models to update their own
positions. In the third and fourth examples, leaders choose
second order polynomial vectors for their positions. The
third example shows how each follower can asymptotically
track desired positions ri,HT by applying stable third order
discrete time dynamics to access positions of in-neighbor
agents. Robustness to communication failure is demonstrated
in example 4 where follower agents evolve under the area
preservation technique.

Example 1 (First Order Continuous Time Dynamics): Given
ε = 0.025 m, λmin(

√
QT Q) = 0.4322 and δmax = 0.1850m,

the upper bound for deviation of the followers is obtained from
Eq. (53) as follows:

δ = λmin(
√

QT Q)(δmax + ε) − ε = 0.0657m.

It is noted that V =
√

102 + (−1)2

T
is the upper limit of the

leader velocities when they move according to the trajectories
given in Eq.(84). Let follower i ∈ VF (VF = {4, 5, . . . , 14})
update its current position by applying the first order dynamics
given in Eq. (54) where inter-agent communication is defined
by the graph shown in Fig. 1 and communication weights
listed in Table I are applied. Then, matrices A ∈ R

11×11 and
B ∈ R

11×3 are obtained by using definitions (24) and (25).
Given ||A−1|| = 7.8917, δ = 0.0657m,

V = ((102 + (−1)2)1/2/T ), N = 14, and p = 2 in
Eq. (66),

gT ≥ 7.8917 × √
11 × √

101

0.0657
= 4.0037 × 103.

TABLE II

COMMUNICATION WEIGHTS wi,i1 , wi,i2 , AND wi,i3

Fig. 12. (a) x̃14,HT (desired) and x̃14 (actual). (b) ỹ14,HT (desired) and
ỹ14 (actual).

Fig. 13. x̃14 − x̃14,HT versus time. ỹ14 − ỹ14,HT versus time. ||r14 −r14,HT||
(deviation of follower 14 from the desired state).

Selecting T = 65 and g = 65, gT ≥ 4.0037 × 103

assures that deviation of each follower necessarily remains less
than upper limit δ during MAS evolution (∀i ∈ VF , ||ri (t) −
ri,HT (t)|| ≤ δ = 0.0657m).

In Figs. 12(a) and 12(b) the X̃ and Ỹ components of
desired position r14,HT (t) and actual position r14(t) are shown
by dotted and continuous trends, respectively. As shown,
follower 14 ultimately reaches the position specified by the
homogeneous transformation,

t ≥ 40, r14,HT = α14,1r1 + α14,2r2 + α14,3r3

= 0.2846(3ẽx − 2ẽy)

+0.3352(10ẽx) + 0.3803(3ẽx + 2ẽy)

= 5.3467ẽx + 0.1914ẽy.

In Fig. 13, x̃14 − x̃14,HT , ỹ14 − ỹ14,HT , and ||r14 − r14,HT ||
are depicted versus time. Note that deviation of follower 14 is
less than δ = 0.0657.
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Fig. 14. MAS formations at different sample times.

Fig. 15. (a) x̃14,HT (desired) and x̃14 (actual). (b) ỹ14,HT (desired) and
ỹ14 (actual).

Configurations of the MAS at sample times 10s, 20s, 30s,
40s, 55s, and 70s are illustrated in Fig. 14. As shown, the
MAS reaches the desired formation inside the narrow passage.

Example 2 (Second-Order Continuous Time Dynamics):
Suppose leaders choose trajectories defined by (82), and the
followers apply the communication graph in Fig. 4 and the
communication weights listed in Table II to update their
positions. Assume that the follower i updates its position
according to the double-integrator kinematic model

r̈i = β1(ṙi,d − ṙi ) + β2(ri,d − ri ). (83)

Then, the characteristic polynomial of the collective dynam-
ics (36) is stable if β1 = β2 = 20 and ri,d is determined
in Section IV-B. Note that the roots of characteristic polyno-
mial (36) are the same as the eigenvalues of matrix AE defined
by (69).

In Fig. 15(a), the X̃ components of the follower 14 actual
position and its desired position prescribed by a homogeneous
transformation are shown by continuous and dotted curves,
respectively. In addition, the Ỹ components of the actual
and desired positions of agent 14 are shown by continuous
and dotted curves in Fig. 15(b). In addition, ||r14 − r14,HT||,

Fig. 16. ||r14 − r14,HT|| (deviation of follower 14 from the desired state).

Fig. 17. Evolution of the MAS in X-Y -Z space.

the deviation of follower 14 from the desired state, is shown
versus time in Fig. 16. Note that the deviation of follower 14
converges to zero during MAS evolution around t = 3 s.

In Fig. 17, the evolution of the MAS in the X-Y -Z space
is shown. The MAS deforms in the X̃ − Ỹ plane where X̃-Ỹ
is shown in Fig. 17 (green mesh).

Example 3 (Discrete Time Kinematic Model): For this
example, leader agents choose the following second-order
polynomial vectors for their trajectories:

Leader 1:

{
x̃1(t) = 0.0022t2 + t − 5 0 ≤ t ≤ 60

ỹ1(t) = 0.0006t2 − 4 0 ≤ t ≤ 60

Leader 2:

{
x̃2(t) = 0.0028t2 ≤ t ≤ 60

ỹ2(t) = −0.0003t2 + 1 0 ≤ t ≤ 60

Leader 3:

{
x̃3(t) = 0.0017t2 − 3 0 ≤ t ≤ 60

ỹ3(t) = −0.0008t2 + 5 0 ≤ t ≤ 60.
(84)

Followers use the communication graph shown in Fig. 4
throughout evolution, where communication weights are the
same as the weights in examples 1 and 2 listed in Table II.
Here, every follower agent updates its position by

1.20600ri[K + 1] − 0.20600ri,d [K + 1] − 3.40601ri[K ]
+ 0.40601ri,d [K ] + 3.20000ri[K − 1] − 0.20000ri,d [K −1]
− 1.00000ri[K − 2] = 0 (85)

at time step K where �t = 0.01. Fig. 18 shows the X̃ and Ỹ
components of r14(t) − r14,HT (t). The X̃ and Ỹ components
of the desired and actual positions are approximately the same
after t = 20 s, implying the deviation of follower 14 converges
to zero, and followers can asymptotically achieve their desired
positions.

Example 4 (MAS Evolution Under Area Preservation):
Let leaders move on straight paths shown in Fig. 9 where
followers apply area preservation to evolve in the X̃ −Ỹ plane.
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Fig. 18. Continuous curve: x̃14 − x̃14,HT versus time. Dotted curve:
ỹ14 − ỹ14,HT versus time.

Fig. 19. (a) Interagent communication graph G1. (b) Interagent communi-
cation graph G2.

TABLE III

AREA WEIGHTS AWi, j,1 AT t = 0 s

TABLE IV

AREA WEIGHTS AWi, j,2 AT t = 10 s

Assume that the interagent communication graph G1 shown
in Fig. 19(a) is used by the followers to update their positions
for all t ∈ [0, 10] s. However, the follower agent 14 does
not communicate with the MAS at t ≥ 10 s. The new
agent communication graph G2 [Fig. 19(b)] is applied by the
followers to acquire the desired positions after t ≥ 10 s.

Area weights AWi, j,1 and AWi, j,2 (i ∈ VF , j ∈ V )
corresponding to communication graphs G1 and G2 are listed
in Tables III and IV, respectively. Here, every follower updates
its position using (79) where g = 50. In Fig. 20, the X̃ and Ỹ
components of the actual and desired positions of follower

Fig. 20. X̃ and Ỹ coordinates of r13(t), r13,HT(t) versus time. Dotted curves:
x̃13,HT(t) ỹ13,HT(t). Continuous curves: x̃13(t) ỹ13(t).

Fig. 21. MAS formations at t = 0 s, t = 10 s, and t = 30 s with agent 14
communication dropout at t ≥ 10.

agent 13 are shown versus time. The MAS formations at
t = 0 s, t = 10 s, and t = 30 s are shown in Fig. 21.

IX. CONCLUSION

In this paper, we considered a communication-based frame-
work for the evolution of an MAS under a homogeneous map-
ping. We admitted the higher order dynamics for the evolution
of every follower agent. Asymptotic tracking of a desired
homogeneous mapping under a fixed communication topology
was guaranteed. We developed an area preservation technique
as a tool for addressing robustness to communication failure.
This technique can be used to achieve the homogeneous
transformation of the MAS under a fixed communication
topology where: i) there is no restriction on the number of
agents and ii) every follower agent i can communicate with
mi ≥ 3 local agents. We showed how MAS evolution can
remain robust to communication failure if some followers
fail to communicate with other agents at some point during
evolution. Future work is required to consider the problem of
MAS continuum deformation in the presence of heterogeneous
communication delay where each follower applies the higher
order dynamics to asymptotically track the desired position
given by a homogeneous deformation.

APPENDIX

Theorem 3: If subgraph � defining interaction among fol-
lowers is directed and strongly connected, and communication
weights are all positive, then partition A of W is Hurwitz.

Proof : The sum of each of the first p + 1 rows of
A = −(I − F) is negative, while the sum of each of the
remaining rows of A is zero, because the sum of every row
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of W is zero and A is obtained by eliminating the first
p + 1 columns of W . The matrix F is nonnegative, since
all communication weights are positive. In addition, F is
irreducible, since the subgraph � is connected. Consequently,
from the Perron–Frobenius theorem, it is concluded that the
spectral radius of F , ρ(F), is not >1. Since the sum of the
first rows of A is negative, A cannot be singular, and thus
ρ(F) 
= 1. As a result, the spectrum of F is <1, and the
matrix A is Hurwitz.
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